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Splitting methods for three-dimensional bio-chemical transport *
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Abstract

Splitting methods for the time integration of three-dimensional transport-chemistry models offer interesting
prospects: second-order accuracy can be combined with sufficient stability, and the amount of implicitness can
be reduced to a manageable level. Furthermore, exploiting the parallelization and vectorization features of the
algorithm, a realistic simulation with many species over long time intervals becomes feasible. As an alternative
to the usual splitting functions, such as co-ordinate splitting or operator splitting, we discuss in this paper a
splitting function that is of hopscotch type. Both for a second-order, symmetric spatial discretization (resulting
in a three-point coupling in each direction), and for a third-order, upwind discretization (giving rise to a five-point
coupling, in general), we define a particular variant of this hopscotch splitting. These splitting functions will be
combined with an appropriate splitting formula, resulting in second-order (in time) splitting methods. A common
feature of both hopscotch splitting functions is that we have only coupling in the vertical direction, resulting
in a stability behaviour that is independent of the vertical mesh size; this is an important property for transport
in shallow water. Another characteristic of this hopscotch-type splitting is that it allows for an easy application
of domain decomposition techniques in the horizontal directions. Two choices for the splitting formula will be
presented. The resulting methods have been applied to a large-scale test problem and the numerical results will
be discussed. Furthermore, we show performance results obtained on a Cray C98/4256. As part of the projec
TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are
available for benchmarking.

Keywords: Transport models; Shallow water; 3D; Splitting methods; Stability; HPCN

1. Introduction

The mathematical model describing transport processes of salinity, pollutants, etc. in water, combined
with their bio-chemical interactions, is defined by an initial-boundary value problem for the system of
3D advection—diffusion-reaction equations
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where ¢; denote the unknown concentrations of the contaminants. The local fluid velocities u, v, w (to
be provided by a hydrodynamical model) and the diffusion coefficients €5, €, €, are assumed to be
given functions. The equations in (1.1) are mutually coupled by means of the functions g;, which model
the (concentration-dependent) bio-chemical reactions and emissions from sources. The definition of
the physical domain and of the initial and boundary conditions completes the model. Following the

Method of Lines approach, Eq. (1.1), together with the initial condition and the boundary conditions
is converted into the semidiscrete initial value problem

__—-diit) =F(t,C(t)) = H(t,C(t)) + G(t,C(t)), C(to) = Co. (12)

Here, C is a vector of dimension mN containing the m concentrations ¢; at the total number of
N := N;NyN, grid points (N, IV, and N, denote the number of grid points in the various spatial
directions, respectively). The term H (¢, C(t)) originates from the discretization of the advection—
diffusion terms (including the boundary conditions), and G(¢,C(t)) is the discrete analogue of the
reaction terms and emissions. Finally, Cj contains the initial values.

Since the functions H and G have quite a different origin, they give rise to a completely different
coupling of the unknowns: in H the concentrations of the various species are uncoupled, but there is
of course a coupling in space, due to the underlying spatial differential operators. In G on the other
hand, we have in each grid point a local coupling of the concentrations. Another observation is that
H is linear in C, whereas G is usually nonlinear.

These observations should be taken into account in selecting a suitable time integration method. In
this context, “suitable” means that the method should have the following properties:

(i) Sufficient stability: In the present application, we are primarily concerned with transport in
shallow seas, resulting in small values for the mesh size in the vertical direction. As a con-
sequence, stiffness is introduced into the discrete system (1.2). This observation excludes the
use of fully explicit methods, since the stability requirements would force the method to take
unrealistically small time steps. One possibility to avoid these stability problems is to select a
fully implicit method. However, the different nature of H and G, as well as the fact that we are
dealing with three spatial dimensions, result in a complicated coupling in the right-hand side
function F', and hence in the corresponding Jacobian. As a result, the linear algebra problem to
solve the implicit relations is extremely large. This aspect leads us to the second requirement:

(i) Manageable level of computational effort: Based on the above observation, we strive for a
reduction of the amount of implicitness, while maintaining sufficient stability. Especially, the
coupling in the systems that have to be solved should be modest. For this item it is also relevant
to mention that good vectorization and parallelization properties are indispensable to reduce
the computational effort.

(iil) Realistic accuracy: In this PDE context, high precision results (e.g., produced by high order
methods) are usually not necessary. On the other hand, since predictions over long time periods
are an essential part in this kind of simulations, first-order accuracy is, in our opinion, too low.
Therefore, we restrict our attention to methods that are second-order in time.
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(iv) Storage economy: Although present-day computers are equipped with large memories, the
nature of flow problems, especially in three dimensions, still necessitates a careful selection of
an algorithm with respect to its storage requirements. A situation in which we are dealing with }
N = 10° grid points and m = 10 or 20 species is certainly not unusual.

(v) Domain decomposition: In many practical situations, different resolutions in space will be
required in various regions of the domain. For example, near the coasts and in estuaries a
fine grid is unavoidable to capture the physical phenomena. A natural way to efficiently cope
with this demand is to apply a domain decomposition approach, in which the various subdo- 1
mains are discretized with an appropriate resolution. Then the (sub)problems on the various i
subdomains can be solved in parallel. However, to obtain an efficient process for the overall
solution, the coupling of these subproblems should not be too tight, since in that case many
iterations would be necessary to match the interface conditions on the boundaries of these
subdomains. Therefore, we are aiming at methods that are “loosely coupled in the horizontal
direction”.

The requirements (1) and (i1) lead us to choose a splitting method, which is partly explicit and

partly implicit. In this way, we can combine the computational simplicity of an explicit method and
| the sufficient stability properties of an implicit method. Such splitting methods consist of a splitting
function and a splhitting formula.

For the splitting formula we will only consider second-order accuracy, as motivated at item (iii)
above. As we will see later, the choice of the splitting formula will also depend on the particular
splitting function that we use.

; Well-known choices for the splitting function are based on “co-ordinate” (or, dimensional) splitting
and operator splitting. In co-ordinate splitting, we create a strong coupling in the horizontal (direction),
which conflicts with our requirement (v). By operator splitting we mean that the advection terms and
the diffusion terms are treated separately. Since at least one of these terms needs an implicit treatment to
satisfy (1), the resulting Jacobian matrix possesses an unpleasant structure, due to the three-dimensional
coupling; this would prevent to satisfy condition (ii).

Theretore, we consider in this paper an alternative splitting function, based on the so-called hop-
scotch type splitting, which corresponds to a special partitioning of the spatial grid points. The basis of
this hopscotch idea goes back to Gourlay [5]. An important characteristic of the particular hopscotch
type splitting that we have used 1s that it gives rise to coupling in the vertical direction only. This
is a useful property in shallow water flow problems, since the stiffness in (1.2) is mainly introduced
by the discretization in the vertical. The partitioning of the points in each horizontal plane depends
on how the differential operators with respect to x: and y have been discretized: if second-order, cen-
tral differences are used (resulting in a three-point coupling in both directions), then it suffices to
divide the horizontal grid points into two subsets. However, a more sophisticated third-order, upwind-
biased discretization needs a partitioning into three subsets. Morcover, as we will see, such a splitting
function imposes an extra condition on the splitting formula. Combining both types of hopscotch
splitting with appropriate splitting, formulae results in splitting methods which were termed Odd-
Even Line Hopscotch (OELH) method and Red-Black-=White Line Hopscotch (RBWLH) method,
respectively.

In [10,11] the numerical treatment of (1.1) has been investigated for the case of a single transport
equation (i.e., rn. = 1), using the OELH method. In [12] this method was successfully applied to
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a five-species model (m = 5). A theoretical stability analysis can be found in [14]. As a result of
these studies we may conclude that the OELH method is sufficiently stable to let the time step be
dictated by accuracy considerations and not by the stability condition; furthermore, it allows for a
very efficient implementation on (multi)vector processors (exploiting the vectorization capabilities of
the Cray C98/4256 resulted in a speed-up factor of about 12 with respect to scalar mode).

The reason to consider upwind discretizations as well, is that unwanted wiggles in the numerical
solution could be generated if symmetric discretizations are used for the advection terms. Such wiggles
can be suppressed to a large extent by using a third-order upwind discretization. This, however,
generally results in a five-point coupling in each direction. As a consequence of this extended stencil,
we can no longer apply the odd—even line hopscotch ordering and we have to introduce three groups
of grid points (say, red, black and white points). Given this splitting function, the time integration
requires a splitting formula which allows for multiterm splitting.

In [7] a survey is given of splitting formulae possessing this property. Some of these formulae
originate from the literature and a few newly constructed ones are presented as well. For the verification
of the time discretization order of these methods, a general framework has been set up in [7]. Starting
with a very general class of Runge—Kutta type methods using fractional stages (called RKS methods),
the order conditions are easily derived. This approach allows to verify the order of any (one-step)
splitting method, however complicated the method may be.

The remainder of the paper is organized as follows. The next section briefly discusses the RKS
framework. Both the OELH method and the RBWLH method will be formulated in this format.
In Section 3, we will discuss the computational aspects of these methods, taking into account their
possibilities for vectorization and parallelization. On the basis of a test example, extensive numer-

cal experiments are presented in Section 4, and, finally, some conclusions are formulated in Sec-
ion 5.

2. Runge-Kutta splitting methods

In [7] a general framework has been set up to define splitting formulae. The starting point was a
Runge-Kutta (RK) type formula.

Based on the multiterm splitting of the right-hand side function F' in (1.2) according to

F(t,C) = fi(t,C), @.1)
k=1
the RKS formula studied in 7] is of the general form
YE) = C‘n,)
e B
Y=Y+ a5l fultn + st YG), i=1,...,s, 2.2)
k=15=0
Cht1 = Ys.

Here, s intermediate approximations Y; have been introduced, which is a typical approach in RK
methods. Furthermore, C,, and Cy,4| represent approximations to the exact solution vector C(t) at
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t =1tn and t = t,y, and At is the integration step. The parameters ag-c) and p; are free and can be
used to give the formula the required numerical properties, such as stability and order of consistency.
The order conditions are easy to verify using the relations derived in [7] (see also [6]). For the
stability we refer to [14], where, for one particular choice (viz. the OELH method), the stability is
analyzed in detail.
Notice that o = 1 yields a conventional (non-splitted) diagonally implicit RK method. The method
{(2.1), (2.2)} will be called an RKS method and is completely defined by the splitting function (2.1)

and the parameters agc) and p; defining the splitting formula. In the next two subsections we will
discuss specific choices, leading to the OELH method and the RBWLH method, respectively.

2.1. RKS method based on symmetric spatial discretization

In this subsection we consider the case that the spatial differential operators are replaced by the

symmetric, second-order difference stencils

0 U 0? 1

u oz ~ ZAIB[ 1’ O) ]]7 axz ~ (Am)z [1> 27 1]7 (23)
and similar expressions for the derivatives with respect to y and z. Notice that we do not need to
discretize the terms c¢;(0u/dz + 9v/dy + dw/dz) in (1.1) since the velocity field is assumed to be
divergence free. As mentioned in the Introduction, symmetric discretization of the advection terms
may easily lead to unwanted wiggles and therefore (2.3) should only be used in the case that the
solution possesses low spatial activity.

From (2.3) we observe that we have a three-point coupling in each spatial direction and that there
is no cross-coupling along the co-ordinate directions. Based on this observation, the grid points in
each horizontal plane are divided into two categories, let us say the “o-points” and the “+-points”, as
indicated in Fig. 1.

Notice that each vertical grid line contains either “o-points” or “+-points”. Furthermore, let the
right-hand side function H in (1.2) be split according to

H(t,C) := H*(t,C)+ H°(t,C), (2.42)

where Ht and H©° have only nonzero values at the grid points + and o, respectively. Then, we may
define the Odd-Even Line Hopscotch (OELH) splitting by

fii=H%,  f,:=H° (2.4b)
To handle the reaction and source terms represented by G, we simply set
fi=G. (2.4¢)
+ o 4+ o0 + o0 + o
o + o 4+ o + o +
+ 0o 4+ ©o0o + o0 + ©
o + o 4+ o + o +

Fig. 1. Two categories of grid points.
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Now, the OELH splitting method is defined by

Yy = C,

Y = Yo + Mt [HO (60, o) + H (8 + 348, Y1)],

Yy = Yi + JAt[H T (t, + 1AL Y1) + HO (¢, + 344, Ya) ],

Y: = Ya+ LAt[G (1, + 188 Y3) + G(t, + 101, Y3)], 25)
Yi =Y+ LAt[HO (t, + 1AL YR) + H (tn + 341, Y3)],

Ys = Vi + JAt[HT (t, + 3ALY:) + HO(t, + AL, Y5)],

Cn+l = Y’i

This scheme can be verified to be second-order indeed. Here we remark that this formulation of the
OELH method slightly differs from the one given in [12]. In that paper the advection—diftusion part
of the equation (i.e., the H-function) was integrated with the OELH method over a full time step; that
is, using only the stages for Y} and Y3, with At/4 replaced by At/2. The resulting output was then
used as input for an explicit RK method to integrate the chemical part of the equation (the G-part).
This so-called “fractional step” approach is, at least formally, only first-order accurate. Following an
idea of Strang [13], a combination of two of such steps in a reversed order results in a method of
second-order, which is very similar to (2.5). In Section 3, this scheme will be discussed in more detail.
First we proceed with specifying the scheme based on upwind discretization.

2.2. RKS method based on upwind discretization of the convection terms

As pointed out earlier, wiggles (and resulting negative numerical values for the concentrations) can
be largely suppressed by an upwind-biased discretization of the advection terms. Here, we use the
so-called x = 1/3 discretization [8], defined by

u
—_— —_ 2 1
3 ool =6 32 01 ifu>0,
€T

S u . (2.6)
E)—ZI[O, -2, =3, 6, —-1], ifu<0,

which is a third-order accurate approximation. For the discretization of the diffusion terms we use the

same stencil as given in the preceding subsection.

Again, we have a coupling in each co-ordinate direction only, but now the coupling is extended
to five points in general. As a consequence, it is necessary to partition the grid points into three
subsets, let us say into “o-points”, “+-points”, and “s-points”. For each horizontal plane, these points
are positioned as given in Fig. 2. Again, points on one and the same vertical line have the same
mark.

Splitting the right-hand side function H in (1.2) as

H(t,C):= H*(t,C)+ H"(¢,C) + H°(t,C), (2.7a)

u

with H*, H* and H° having only nonzero values at the grid points *, + and o, respectively, the
Red-Black-White Line Hopscotch (RBWLH) splitting is defined by

fi = H", fr=HT, fi:=HP°, fa=G.

(2.7b)

The
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o + x o
* o + x

* o +
o+ % o
* o + %
+ x o +
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Fig. 2. Three categories of grid points.

The RBWLH method that turned out to be the most promising (see [7]) reads

¥y = Ch,
=Yy + At[HO(tn, Yy) + H* (t, + 1At }q)]

Y, =Y + SAt[H* (t, + At}q)+H+(t + 1AL Y3)],
=Y + ;At[H™ (tn + 34, Y2) + HO(t, + 1A, Y3)],

Y: = Y3 + JAt[G(tn + 3AL,Y3) + G(tn + 1At Y4)], (2.8)

Ys = %At[HO(tn+ SALYL) + HT (t, + 34, Y5)],

Ye = Y5 + SAt[HT (tn + 34, Y5) + H*(tn + 34t Y5)],

Y, =Y+ At[H*(t + 3At,Ys) + HO(tn + At, Y7)],

Chy1 =Y.

This method satisfies the second-order conditions given in [7].

3. Computational aspects

In this section we will discuss the computational aspects of the methods defined above. Here, we
distinguish between algorithmic and implementational aspects, which will be discussed in the next
subsections, respectively.

3.1. Algorithmic aspects

First, we observe that both methods have several features in common. For example, we see that
in each stage the intermediate approximation Y; appears implicitly in only one of the functions
H*, H*, H° or G; this results in a minimal amount of implicitness, which is in accordance with
our aim (ii), as formulated in Introduction. Nevertheless, both schemes possess a sufficient stability
behaviour. The OELH method (without chemical terms) has been analysed in detail [14], and it turned
out that the relevant condition on the time step is of the form

N Cl} 1
At(m + Ay> < 4. 3.1)

Hence, we observe that the maximal stable stepsize is neither influenced by the terms in the vertical
direction nor by the corresponding discretization parameter Az. This is exactly what we want, for
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reason formulated in property (i) in the Introduction. As a matter of fact, this property of hopscotch
type splitting was the motivation for constructing this particular “explicit-in-the-horizontal-implicit-
in-the-vertical-line-hopscotch-splitting”. For the RBWLH method (2.8) a similar stability analysis is
in progress; numerical experiments indicate that an analogue of (3.1) is obtained with the number 4
replaced by 2.7.

Owing to this minimal implicitness, the amount of work per stage is quite limited: let us, for
example, discuss the first stage of the RBWLH method (2.8) in some detail. First of all, we recall that
the concentrations of the various species composing Y| are not coupled in the H-functions, so that
these concentrations can be computed in parallel. Furthermore, we observe that only the *-points in Y]
have to be calculated implicitly (in this stage, the +-points are simply copied from Yjp, and the o-points
are calculated explicitly). The total number of these *-points equals _%NxNyNZ. The positioning of the
points in each horizontal plane has been chosen in such a way that the upwind molecule (2.6) does
not couple the horizontal *-points (see Fig. 2). There is, however, a coupling in the vertical direction,
since the vertical grid lines contain points with the same mark. Hence, the work in the implicit part of
the stage for Y] falls apart in solving %NmNy uncoupled, linear systems, each of which is of dimension
N,. These linear systems are, in general, of pentadiagonal form and allow for an efficient solution.
This can be done either in parallel or in vector mode (see the next subsection for a discussion on this
topic).

Obviously, the other stages in (2.8) involving H-functions require the same amount of work. For
the OELH method (2.6) the situation is similar; here, the number of uncoupled, (tridiagonal) linear
systems to be solved per stage equals %NmNy (having the same dimension V,) for which an efficient
solution process has been implemented (see Section 3.2).

A next observation is that some of the stages can be implemented in the so-called “fast-form”, by
which we mean that some of the explicit H-evaluations can be avoided: let us consider the following
consecutive stages

Y; = Y;_ |+ “explicit H-evaluation in non #-points” + 1 AtH*(t, + pAt,Y;),
Y, =Y+ %AtH#(tn + pAt, Y;)+ “implicit H-evaluation in non #-points”,

where p equals 1/4 or 3/4, and # stands for * or + in (2.8) and for + in (2.5). Clearly, the #-points
in Yj;, are defined by

YA = Y+ L AH (b 4+ 6t i) = Y+ (Y - Y ) =2 - Y

Furthermore, in both methods this idea can also be used to calculate the o-points in the first stage of
a step, using the relation in the last stage of the previous step.

Next, we discuss the “chemical stage”, involving the G-function. Here, we easily recognize the
trapezoidal rule. Although this formula is implicit, the Y -vector defined in this stage has been solved
by a simple functional iteration process. This approach is motivated by the observation that the
chemistry in water is usually quite slow (i.e., the Lipschitz constant of the function G is small).
This iteration is continued until the residual (measured in the maximum norm) satisfies a prescribed
tolerance. In order to maintain the second-order accuracy of the overall scheme, the residual should be
proportional to the local truncation error of the trapezoidal rule. Therefore, in our experiments we have
chosen the tolerance parameter to stop the functional iteration of the form §(At)?, with & sufficiently
small.
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We have seen that the coupling in the horizontal direction is very weak. This implies that the
algorithm 1s suitable to be used within a Domain Decomposition context: the solution in one domain
does not directly influence the solution in another domain, so that “matching” of the conditions on
the mutual boundaries can be avoided. This was formulated as aim (v) in the Introduction and results
will be reported in the near future.

Finally, we discuss a peculiar property which is inherent to the hopscotch splitting approach. Since
the horizontal diffusion terms are treated in a way similar to the Du Fort-Frankel scheme (for parabolic
problems), we have conditional convergence as Az, Ay — 0 and At — 0. In fact, it can be shown that
the global error of the hopscotch schemes is of the form

(At)2< L. )C+O((At)2)+O(Aq)

advection

(Azx)? T (Ay)? +0(4%) gifusion (3.2)

where A = max(Az,Ay,Az), ¢ = 2 for OELH and ¢ = 3 for RBWLH, and C involves second
derivatives (with respect to time) of the solution. For a more detailed discussion on this Du Fort—
Frankel deficiency we refer to [14]. The consequence is that reducing all discretization parameters (in
space and time) with the same factor, will not increase the resulting accuracy in the case that the first
term in (3.2) dominates the global error. Therefore, the proper strategy in applying these methods is
to choose the spatial grid as coarse as allowed by the bathymetry, the geometry, and the requirements
with respect to resolution (i.e., spatial accuracy). Then, owing to the good stability properties and the
second order behaviour in time, the time step can be selected in order to give roughly the same time
discretization error.

3.2. Solving the linear systems

As indicated in the previous section, the implicit part in each stage requires (per concentration) the
solution of aeNz N, uncoupled linear systems, where o = 1/2 for OELH and o = 1/3 for RBWLH.
In both codes these systems have been solved using a technique initially proposed by Golub and Van
Loan [4]. The idea is to perform the successive steps in an LU-factorization (which are recursive,
and hence prevent vectorization) for all systems simultaneously; since the systems are uncoupled, the
resulting loops are perfectly vectorizable. Furthermore, because aN; IV, is usually large, we obtain a
vector speed close to peak performance. This so-called “vectorization-across-the-systems approach™
for solving the tridiagonal systems occurring in OELH, has been extensively discussed in [11,12]. The
same idea, however, can equally well be used to solve the pentadiagonal systems arising in RBWLH.
We will now briefly comment on this extension.

In RBWLH we use an upwind-biased discretization for the vertical advection terms, yielding a
coupling between four successive unknowns. However, depending on the sign of the vertical ve-
locity component, the diagonal element may be the second or the third of these four non-zero ele-
ments. To obtain a regular pentadiagonal system, additional zero elements have been introduced at
the “free” fifth position, as already indicated in (2.6). The costs of computing with these zeros in
the co-diagonals are insignificant compared with the advantage of handling matrices with a constant
bandwidth.

This “vectorization-across-the-systems” way of solving the linear systems has been implemented
in the routines TRI3D (for the tridiagonal systems in OELH) and BANDS (for the pentadiagonal
systems in RBWLH). These routines do not need workspace, since the input arrays are overwritten
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z%blljetilmes (in seconds) and Mflop rates for TRI3D and BAND5
TRI3D BAND3
CPU time  Mflop rate  Speed-up w.r.t. CPU time  Mfloprate  Speed-up w.r.t.
Mode of calling per call scalar mode per call scalar mode
New Jacobian 0.96-107° 610 22 1.09-1073 628 20
Only new right-hand side ~ 0.46 - 107° 369 29 0.45.1073 420 24

with the results of the decomposition (i.e., with the L and U matrix); similarly, the solution is delivered
in the array providing the right-hand side vector. Apart from memory considerations, storing the L
and U has an additional advantage: in many calls of TRI3D and BANDS, the coefficient matrix
has not changed, so that only a forward/backward substitution is needed. This is especially lucrative
if many concentrations are involved, since then the Jacobians for all discretized PDEs (with the
same boundary conditions) are the same. Per system of dimension N, both routines require N,
divisions, and respectively 7N, and 16N, multiplications/additions in the LU -factorization part. Here
we remark that the constants in front of IV, are larger than one might expect for a standard LU-
factorization. This is due to the fact that it is the coefficient matrix I — %Atj which has to be
decomposed when J has changed. To exploit the fact that the coefficient matrix is always of this
specific form, its construction is incorporated in the decomposition algorithm. In the appendix, both
algorithms are listed. For the subsequent forward/backward substitutions, they require SN, and 9NV,
multiplications/additions, respectively. For both routines, Table 1 shows the CPU-times per call, and
the Mflop rates (obtained on 1 processor and running in vector mode); here, we distinguish between
he case that the Jacobian has been changed, and the case that a previous decomposition can be
-eused. These results correspond to a grid with NV, = N, = 81 and IV, = 11. Notice that (per
concentration and per step) 4 calls of TRI3D and 6 calls of BANDS are needed. To demonstrate
the excellent capabilities of these routines to exploit the vectorization facilities, we have included
in Table 1 the speed-up factors that are obtained with respect to executing in scalar mode on the
Cray C90.

Both routines have (among others) the input parameters NXR and NY, which can be used for an
optimal tuning to the vector capabilities of the Cray, as well as to the availability of parallel processors.
The parameters NXR and NY denote the length of columns and rows of the arrays containing the data
corresponding to one horizontal plane of the grid. Optimal vector performance on one processor is
obtained when the actual values in a call of TRI3D and BANDS are set to aN; IV, and 1, respectively.
In this way, loops are collapsed, yielding optimal vector speed. For the multi-processor variant, the
routines are called with the actual values &N, and Ny, for the parameters. In this case, Ny, sets of alV,
systems will be distributed among the processors (with the best distribution when Ny is a multiple
of the number of processors); per processor, the vectorized loops have length a/N;. In Table 2 we
have listed performance results obtained on a grid with N; = IV, = 81 and N, = 11. From this table
we observe that the vector speed, per processor, is reduced by a factor 1.7 (for OELH) and 2.7 (for
BANDS5) by changing from single- to multi-processor mode. Hence, for these routines, the number of
parallel processors should be at least 2 and 3, respectively, to outweigh the loss of performance due
to shorter loops. It should be remarked that the above numbers hold for the aforementioned grid, and
that this reduction of vector speed is less pronounced if the grid is refined.
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Table 2
Influence of the vector length due to parallelization
TRI3D BANDS
Length of vectorized loop Mflop rate Length of vectorized loop Mflop rate
Single-processor mode 1NN, 532 1NNy 557
Multi-processor mode 3Nz 308 ANy 208

Finally, we remark that we can refrain from using a pivot strategy (which would destroy the
vectorization-across-the-systems approach). We have verified that in both cases the requirement on At
to obtain diagonal dominance is much less stringent than the respective stability conditions on the
time step (assuming realistic values for all parameters involved in these conditions).

4. Numerical experiments

The OELH and RBWLH methods described in the Sections 2.1 and 2.2 are applied to the test
problem (see also [7])

dc
"a% + U -Ve, =¢eAcy + g1(t,2,y, 2) — kiciea,
(4.1a)
oc
é}?‘ + U -V =€l +g2(t,:c,y,z) —kicy + kz(l — Cz),

defined on the region 0 < z,y < Ly, =Ly < 2z < 0 and for 0 < ¢t < T Here, U = (u,v, w) denotes
the divergence free velocity field, given in analytical form (see [2])

u(t,z,y,2) ={j+3(E+ D [(E -3+ F -2~ ¢]}1d),

o(t,z,y,2)={ —2+3E+HE -5+ @ - 5)* - F1}d), (4.1b)

w(t,z,y,2) = =3L,2(Z + N{(Z — 3)/Ln+ (7 — 3)/Ln}d(t),
where we used the scaled co-ordinates Z := x/Lp, § := y/Ln, Z := z/Ly; furthermore, ¢ = 3 and
d(t) = cos(2nt/Tp). The Dirichlet boundary conditions, the initial condition and the functions g, and
¢» are chosen in accordance with the prescribed analytical solution, which is of the form

= - - 2 .
ci(tyx,y, 2) = exp {Z/i — fi(t) — fyi[(:zz - 7'(t))2 + (5 — s(t)) ]}, i=1,2, (4.1¢)

with () = t/(Ty+1), fi(t) = 4f2(t), r(t) = [2+ cos(2nt/Tp)|/4, and s(t) = 2+ sin(27t/T),)]/4.
In our experiments, we take the following values for the parameters: Ly = 20,000, L, = 100,¢ =
0.5,v = 80,v, = 20,7}, = 32,400, and T, = 43,200. The length of the integration interval T =
36 000. Realistic values for the reaction rate constants are: k| = kp = 1074,
The global accuracy of the fully discrete approximation is measured by

cd; := minimum over all grid points (—log;, |absolute error for ¢;|), i=1,2.

Hence, cd; can be considered as the (minimal) number of correct digits for concentration ¢;. In the
experiments, we used three spatial grids, of increasing resolution:

R s il
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Gridcoarse is defined by: N, = N, =41, N, = 6, amounting to ~ 6 - 103 internal grid points;
Gridpidqle is defined by: Ny = N, = 81, N, = 11, amounting to ~ 5.6 - 10* internal grid points;
Gridg,e is defined by: N = N, = 161, N, = 21, amounting to ~ 4.8 - 10’ internal grid points.

4.1. Algorithmic tests

In this section we show by some experiments the influence of the discretization parameters (in
space and time) on the numerical behaviour of both methods. The influence on the performance will
be discussed in the next section.

In Table 3 we present the cd-values for both concentrations, obtained by the OELH method on the
three spatial grids and for various values of the time-step. Table 4 contains similar information for the
RBWLH method.

Table 3 gives rise to the following remarks and conclusions:

— With respect to the time discretization we observe an increase with 0.6 in the cd;-values on halving

the time step, which is in agreement with the second-order consistency of the OELH method.

— The use of a second-order, three-point discretization in space (cf. (2.3)) is nicely observed if we
compare the results on the different grids for extremely small At (headed by “N — o0”), for
which the temporal error is negligible compared with the spatial error.

— Since max |u(t, z,y, z)| = max|v(t,z,y, z)| = 1.58]d(t)| < 1.58, the maximal stable time steps
are in accordance with the stability condition (3.1).

— Furthermore we observe that, for fixed values of At, a refinement of the spatial grid does not
generally result in an increased accuracy. It turned out that this behaviour is caused by the fact
that we are dealing with time-dependent boundary conditions. It has been known for a long
time that splitting methods usually exhibit a reduction of accuracy when the boundary condi-
tions become time-dependent. The explanation for this phenomenon is that, at points adjacent
to the boundary, the grid function is not sufficiently smooth, resulting in approximation errors
of O(h? 4+ At*/h?) in these points, h denoting the distance to the boundary. Already in 1967,
Fairweather and Mitchell [3] suggested a boundary-value correction for ADI methods to solve
the Laplace equation (see also [9], where these ideas are extended to more general boundary
conditions and to LOD methods). In the case of hopscotch type splitting, however, the derivation
of these “Fairweather—Mitchell corrections” is much more complicated and we refrained from
applying such corrections. In the present application, the “vertical” derivatives of the solution at
the water surface and at the bottom are relatively large compared with the “horizontal” derivatives
at the boundaries. Consequently, the approximations in the grid points adjacent to the surface and
the bottom have an error involving the term (Az)~2, causing the behaviour as shown in Table 3.

Table 3

cdi /cd values for problem (4.1) with T = 36,000 obtained by the OELH method. N = the number of time steps (At =
T/N); an unstable behaviour is indicated by an “x”

Spatial grid N =35 N=70 N=140 N=280 N=560 N=1120 N=2240 ... N — o0
Gridcourse 2.9/1.9 3.3/25 3.3/3.1 3.3/3.5 3.3/35 3.3/3.5 3.3/35 3.3/3.5
Gridmigdte * 3.120 3.7/2.6 3.9/3.2 3.9/3.8 3.9/4.1 3.9/4.1 3.9/4.1

Gridfne * * 3.1/1.9 3.8/2.6 4.4/3.2 4.5/3.8 4.5/4.4 4.5/4.7
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Table 4
edyedy values for problem (4.1) with T = 36.000 obtained by the RBWLH method. N = the number of time steps
At = T/N1an unstable behaviour 18 indicated by an "™

Spatial grid N=35 N=70 N=I140 N=280 N=560 N=1120 N=2240 ... N
Gridioare RETA R 3524 3830 I8/36 3842 38/43 IRM43 3.8/4.3
Gridmage * 20/18 3625 4330 48137 4.8/43 48/49 4.8/5.2
Gridane * * * IS 4332 S0/38 5644 5.8/6.1

For the results produced by the RBWLH method we observe a similar behaviour in time as for
the OELH method. The spatial discretization error, however, shows a third-order behaviour as is to
be expected from the upwind discretization (2.6) that we used. Apart from reducing wiggles in the
numerical solution, this high order discretization has the additional advantage that sufficiently small
spatial errors are already obtained on a rather coarse grid. This is a nice property in view of the
aforementioned accuracy reduction due to time-dependent boundary conditions.

4.2. Performance results

Both the OELH method and the RBWLH method have been implemented on the four-processor
CRAY C98/4256 vector computer. In this section we give the performance results in scalar and vector
mode for both codes. Vector mode is automatically achieved using the ¢f77 -Zv option of the CF77
compiling system. Megaflop rates (i.e., 10° floating point operations per second) and CPU times for the
various routines are produced by the package perfview [1]. The speed-up that can be achieved owing
to vectorization aspects of the codes has been tested using one (vector)processor. The optimal vector
speed on one processor of the Cray equals 476 Mflops (in the exceptional case that a multplication
and an addition can always be chained, this theoretical peak performance is enhanced by a factor 2).
These (vectorization) results are described in the next subsection. The capabilities that the codes offer

the Cray (activated by ¢f77 -Zp). Instead of running the codes on a dedicated system., we employed
the utility atexpert [1], which produces predictions of the speed-up factors that can be obtained on a
multi-processor system.

4.2.1. Vectorization results
We start with a survey of the global performance of the codes, to show the speed-up factors owing
to vectorization. Since these factors depend on the vector length (i.e., on the number of grid points),
we give results obtained on the three ditferent spatial grids. For the OELH method, Table 3 shows the
Megatlop rates for scalar and vector mode, the (average) CPU times needed for one time step and the
resulting speed-up. Similar information for the RBWLH method is collected in Table 6.
From Tables 5 and 6 we conclude that:
~ The speed-up factors are grid-dependent; in fact, the Mfiop rates are reduced on coarser grids, due
to the fact that in a number of subroutines vectorization in only one spatial direction 1s possible
(viz., the innermost loop of length N,). Since the hopscotch splitting also gives rise to a stride (2
for OELH and 3 for RBWLH), it is clear that the vector length on Grideoarse (having N, = 41)
is too short to achieve a vector speed close to peak performance.
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g‘;:&ﬂspcn‘ormzmcc and speed-up factors obtained by the OELH method on various grids. The CPU times are per time step
Gridcouse Gridmadte Griduye
CPU (insec.)  Mflop rate CPU (in sec.)  Mtlop rate CPU (in sec.) Mflop rate
Scalar mode 0.31 30.1 1.83 315 12.5 31.9
Vector mode 0.034 272 0.16 363 0.89 447
Speed-up factor 9.0 11.6 14.1
Table 6

Global performance and speed-up factors obtained by the RBWLH method on various grids. The CPU times are per time
step

Grideoane Gridmiddie Gridgine
CPU (in sec.)  Miflop rate CPU (in sec.)  Mflop rate CPU (in sec.) Mflop rate
Scalar mode 0.44 28.8 244 30.7 15.9 316
Vector mode 0.062 206 0.28 276 1.46 351
Speed-up factor 7.0 8.8 10.9

— The computational amount of work per step is quite similar for both schemes: they have in
common that 2N, N, linear systems have to be solved, and the “‘chemical stage” has to be
iterated (which turns out to require an equal number of iterations for both schemes). The main
difference is that an evaluation of an H"-function in RBWLH is more expensive (due to an
extended discretization molecule) and, of course, solving a pentadiagonal system takes more time
than a tridiagonal system. From the CPU times given for the scalar mode version we see that this
extra work for RBWLH results in an increase of the computational work of 27% on the fine grid
to 42% on the coarse grid. However, a comparison of the vector performance of the two codes
reveals that the CPU time per step is roughly 70% larger for RBWLH. To a large extent, this is
explained by the superior vectorization properties of OELH (compare the speed-up factors).

In Tables 7 and 8 we present the performance results of the main routines in the codes, obtained
on the various grids. These routines are: the subroutines H and SOURCE (for computing, per con-
centration, the discretized advection—diffusion terms, and the inhomogeneous terms g;, respectively),
the subroutine CHEMST (for treating the chemical stage), JACOB (to calculate the Jacobian matrices
corresponding to each subset of grid points), TRI3D (in OELH) and BANDS (in RBWLH) (to solve
the linear systems), and the subroutine FCH (to calculate the chemical reaction terms in the right-hand
side function). In these tables the symbol # indicates that the number of FCH-calls per step is not con-
stant; obviously, the number of functional iterations to solve the “chemical stage” decreases when At
is chosen smaller (but this number of iterations does not depend on the resolution of the spatial grid).

4.2.2. Parallelization aspects

As explained in Section 3.2, a few minor modifications in the code are necessary to exploit the multi-
processor features of the Cray. A typical treatment of the autotasking facility is to collapse as many
inner loops as possible for vectorization purposes and to use the next outer loop for parallelization. In
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Table 7
Vector performance of the main routines in OELH
Grideoarse Gridmiggle Gridgine
Number of calls  Average time  Mflop rate Average time  Mflop rate Average time  Mflop rate
Routine per time step (in sec.) (in sec.) (in sec.)
H 10 4.6-1074 181 2.5-107° 295 1.5-1072 414
SOURCE 10 1.6-107° 236 761073 357 43.10°2 473
CHEMST 1 39.107° 396 1.8-1072 395 1.0-107" 392
JACOB 4 1.9-107* 69 93-107* 108 53-107° 151
TRI3D 8 9.7-107° 521 7.0-107* 536 55-107° 530
FCH # 1.5-107* 703 8.8-107* 712 6.1-1073 706
Table 8
Vector performance of the main routines in RBWLH
Grideyarse Gridmiddie Gridfine
Number of calls Average time Mflop rate Average time  Mflop rate Average time  Mflop rate

Routine per time step (in sec.) (in sec.) (in sec.)
H 14 1.1-107? 123 59-107" 200 3.6-1077 282
SOURCE 14 1.5-107? 175 6.6-107° 278 341077 400
CHEMST 1 39-1077 393 1.8-107* 393 8.4-1077 394
JACOB 6 59-107* 59 32-107° 97 171072 149
BANDS 12 1.0-107* 541 7.8-107* 557 6.1- 107" 577
FCH # 1.5-107¢ 707 9.1.107* 692 6.1-107* 702
Table 9
Parallel performance of the code RBWLH, estimated by atexpert

# processors 2 4 6 8 10 12 14 16
speed-up on Grideourse 1.92 3.63 5.05 5.97 7.00 8.25 8.46 3.64
speed-up on Gridmiagte 1.95 375 5.41 6.90 7.80 9.65 9.92 11.17
speed-up on Gridfine 1.96 3.75 5.41 6.94 8.14 9.71 10.43 12.06

some subroutines, this approach causes a slight reduction of the vector performance on each processor;
however, the speed-up factors owing to multi-processing give ample compensation for this effect (see
also the discussion in Section 3.2). The results of the atexpert utility, when running the code RBWLH
on the various grids, are given in Table 9. For the fine grid, we observe a behaviour which is pretty
close to linear speed-up. In the case of many processors, the coarser grids show a degradation of the
parallel performance. This is due to the fact that the value of N, (which controls the outer loops that are
taken for parallelization) is not large enough to efficiently distribute Ny subtasks over many processors.
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5. Concluding remarks

In this paper we have discussed two hopscotch type splitting methods for solving a three-dimensional
transport model coupled with bio-chemical terms. The main difference between these methods is that in
the first one (termed OELH) symmetric, second-order spatial discretizations have been used, whereas
the second method (RBWLH) is based on third-order upwind discretizations. The advantage of the
latter approach is that so-called “wiggles” in the solution are reduced to a large extent. This is a highly
desired property, since wiggles may lead to negative concentrations, which are “unacceptable” from a
physical point of view. The price to pay is, of course, a more complicated (and hence more expensive)
spatial discretization, a reduced vector speed, and a reduced stability limit. The first and second aspect
accumulate to an increase of the total CPU time by roughly a factor 1.7. If both schemes use their
largest possible time step allowed by the respective stability conditions, then an additional factor 1.4
has to be taken into account.

The motive for constructing these particular methods is that a problem of this size can hardly be
solved by a standard technique. The only feasible way to perform realistic simulations, especially
over long real-time intervals, is to tailor the method to this specific application. Several considerations
have led to these hopscotch type methods; for example, the fact that we are dealing with shallow
seas introduces stiffness in the system of ODEs, caused by small values of Az. This is exactly the
reason for choosing a splitting function which treats the vertical terms implicitly. The weak coupling
in the horizontal, on the other hand, makes it possible to treat the horizontal terms explicitly (and
hence cheaply), without imposing a severe restriction on the time step. In this way, the amount of
implicitness has been minimized. Other useful characteristics of these methods are: modest storage
requirements, second order accuracy in time, and the possibility to easily embed the methods within
a domain decomposition framework (owing to the weak coupling in the horizontal).

Apart from the above advantages, which can be considered as being of algorithmic nature, both
methods allow for an efficient implementation on multi-vector computers. In Section 3.2 we showed
how to vectorize the solution of the linear systems, resulting in speed-up factors of 20 and more. Also
the treatment of the chemical terms, which have been “separated” from the advection/diffusion terms,
shows a vector speed close to peak performance (see Section 4.2). Of course, several other routines
in the code are less suitable for vectorization, thus reducing the overall vector speed-up. For OELH
we obtained an overall speed-up ranging from 9 (obtained on a coarse mesh) to 14 (on a fine mesh).
For RBWLH these numbers are 7 and 11, respectively.

On top of this speed-up owing to vectorization, a reduction of the total CPU time can be obtained by
exploiting more than one (vector) processor. In Section 4.2.2 we showed that multi-processing leads
to a speed-up close to linear.

Hence, combining these three aspects (viz., algorithmic tuning of the methods to the problem at
hand, and taking care of good vectorization and parallelization) leads to a resulting code by which
realistic simulations become feasible.
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Appendix A. The algorithms TRI3D and BANDS

Here we present the algorithms for solving the tridiagonal and pentadiagonal linear systems as they
occur in OELH and RBWLH, respectively. In both algorithms we first form the matrix A := [ — 3.],
where 3 always equals iAt (cf. (2.5) and (2.8)). Then this matrix is decomposed, followed by a
forward/backward substitution. The algorithms are designed in such a way that the number of divisions
is minimized. In the actual implementation the input matrices and the right-hand side vectors are
overwritten by the results of the decompositions and the solution vectors, respectively. For presentation
purposes, however, we prefer to describe the methods in an algorithmic way, in terms of the ‘triangular
matrices’ L and U. Therefore, in the case that the subscripts are < 1 or > N,, the corresponding
element 1s assumed to have a zero value.

The algorithms for one system (I — 3.J)x = b of dimension NV, read:

TRI3D Algorithm. The matrix A is decomposed into the form LD ™', with the triangular matrices
L and U having diagonal elements equal to 1, and D a diagonal matrix. Subsequently the systems in
LD~'Ux = b are solved. The number of operations amounts to 8N, floating-point multiplications,
4N, floating-point additions and NN, divisions.
FOR 7 = I(1)N, DO
Ai1y = =% A;_,; {we do not need to store the elements of {/, however, the
upper-diagonal of A must be updated to belong to I — 3./}
Loy ==+ A+ Dy
]), L= l/(l — /'f * /1,;’.,; - [J,y«,,,| * Al._]‘,)
{we have now obtained the decomposition results L and D}
FOR 7 = l(l)N: DO Yp o= f),‘, - L.,;Jj,...l *
FOR i = N (=1)1 DO 2; := Dy * (y, — A,y 1 * 141)

BANDS Algorithm. The matrix A is decomposed into LU-form, with the lower-triangular matrix
having unit diagonal elements, followed by solving the systems in LU = b. The number of operations
amounts to 16/V,, floating-point multiplications, 9N, floating-point additions and N, divisions.
FOR 7 = 1(1)N. DO
Liv 2= =+ Ay axU7h
Uiy ==+ A 2,
Lig v i= (=% Agtv = Loy g # U o)+ U
Up == *Aj i —Liy0%xU, 2y
U o= 10 =B Ay = Ly 2% Uz = Ly 1 # Uy 1)
{we have now obtained the decomposition results L, (11';'11 and the codiagonals of 1/}
FOR & = I(1)N, DO y; = by — Lij o % yi0— Loy 9,
FOR i = N, (= 1)1 DOy i= U, (g = Usyyg # gy = Upyia vy i)

t
i
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